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Abstract—Regular expression matching is considered impor-
tant as it lies at the heart of many networking applications
using deep packet inspection (DPI) techniques. For example,
modern networking intrusion detection systems (NIDSs) typically
accomplish regular expression matching using deterministic finite
automata (DFA) algorithm. However, DFA suffers from the
high memory consumption for the state blowup problem. Many
algorithms have been proposed to compress the DFA memory
storage space, meanwhile, they usually pay the price of low
matching speed and high memory bandwidth. In this paper,
we first propose an effective DFA compression algorithm by
exploiting the similarity between DFA states. Then, we apply
a next-state prediction strategy and present a fast DFA matching
engine. Carefully designing the DFA matching circuit, we keep
the prediction success rate by more than 99.5%, thus get a
comparable matching speed with original DFA algorithm. On the
side of memory consumption, experimental results show that with
typical NIDS rule sets, our algorithm compressed the original
DFA by more than 99%. Mapping this algorithm on Xilinx Virtex-
7 FPGA chip, we get a throughput of more than 200Gbps.

I. INTRODUCTION

Regular expression matching lies at the heart of deep packet
inspection (DPI)[1] applications, especially for the Networking
intrusion detection systems (NIDSs). Modern NIDS, such as
Snort [2] and L7-filter [3], use regular expression rules to
detect networking attacks. Compared with the simple string
rules, regular expression rules have higher expressive power
and are able to describe a wider variety of payload signatures
[4]. State-of-the-art NIDS uses DFA algorithm to perform
regular expression matching for its line rate matching speed.
But as the rule sets become complex and large, DFAs suffer
from the state blowup problem, especially for the patterns
with constrained and unconstrained repetitions of wildcards
and large character sets [5]. According to [6], the L7-filter’s
rule set, containing 109 regular expression rules, consumes
more than 16GB memory space when compiled to a composite
DFA. Compression mechanism is an effective way to reduce
memory consumption of DFA. Many compression algorithms
have been proposed, such as D2FA [7], δFA [8][9] and A-DFA
[10]. These algorithms use the redundancy of DFA transition
table to generate a new compressed DFA structure. Meanwhile,
the compression of DFA implies that multiple states may be
traversed when processing a single input character. So the
compression algorithms usually pay a price of worse memory

bandwidth and lower matching speed.

In this paper, we continue focusing on the DFA com-
pression mechanism and develop a new DFA compression
algorithm called J-DFA. We apply clustering algorithm to
classify all DFA states to different groups. In each group,
we extract a common state, and the transitions in this group
different from the common state are stored in a sparse matrix.
Then, we encoded the common state by run-length encoding.
By using these methods in combination, the compression ratio
of J-DFA reaches 99%.

The key issue of mapping DFA compression algorithm
into FPGA is how to access the compressed DFA structure.
After compressing, the DFA transition table becomes irreg-
ular because a lot of zero-elements are eliminated. Previous
works focus on the compressing technologies and place little
emphasis on how to access the irregular compressed transi-
tion table efficiently. Only in [11], bitmap is mentioned to
store the compressed DFA structure. However, bitmap method
consumes at least 3 clock cycles to accomplish one lookup,
thus greatly decreasing the matching speed. So, we present
a novel architecture to resolve the conflict between memory
usage and matching speed. We design a state prediction method
to accelerate regular expression matching based on J-DFA
algorithm. We observe that in the real matching process of
J-DFA, it has a great chance that the “next state” lies in the
same “clustering group” of the “current state”. So we can
predict the “next state” according to the “clustering center”
of the “current state”. Inspired by the locality principle of
programs behaving in memory and CPU cache [12][13], we
design a next-state prediction unit [14][15] and add it to our
regular expression matching engine on Xilinx Virtex-7 FPGA
chip. Experiment results show that the prediction success rate
is more than 99.5%, thus achieving a comparable matching
speed with original DFA algorithm.

In summary, the main contributions of this paper are:

(i) We develop a new DFA compression algorithm called
J-DFA by clustering algorithm and encoding scheme.
Moreover, we measured the compression ratio of J-
DFA. Measurement results show that the compression
ratio reaches about 99%.

(ii) We develop a state prediction method for J-DFA and
measured it using real-life NIDS regular expression



rulesets and datasets. Measurement results show that
the prediction success rate of J-DFA reaches more
than 99.5%.

(iii) Based on J-DFA, we design a regular expression
matching engine with state prediction unit. This en-
gine performs very well in both memory usage and
memory bandwidth. Using parallel lookups on the
newest Xilinx Virtex-7 chip, the throughput reaches
from 230Gbps to 430Gbps for real-life rulesets.

II. RELATED WORK

Kumar et al.[7] observed that two states (S1, S2) have many
similar next state transitions (T) for an input characters subset.
According to this observation they proposed a new algorithm
called D2FA to compress the transition table. D2FA eliminates
S1’s transitions (T) by introducing a default transition from S1
to S2. The experimental results show that a D2FA reduces
transitions by more than 95% compared to original DFA.
However, D2FA’s transition mechanism is possible to look up
memory multiple times per input character, leading to a higher
memory bandwidth.

To avoid the high memory bandwidth requirement of
D2FA, Ficara et al.[8] present a new representation for deter-
ministic finite automata, called Delta Finite Automata (δFA).
They record the transition set of current state into a local
memory, and only store the differences between current state
and next hop state. In this way, δFA achieves very good
compression effect. In addition, this algorithm requires only
a state transition per character (keeping the characteristic of
standard DFAs), thus allows a fast string matching speed.
But δFA does not optimize the DFA structure, resulting in
a relatively weak compression ratio compared with other
algorithms.

Becci et al. improved the idea of D2FA, and developed a
DFA compression algorithm called A-DFA in 2013 [10]. By
introducing the notion of “state depth” to quantify a state’s
distance from the initial state, A-DFA constructs nearly optimal
default paths. Compared with D2FA, A-DFA results in at most
2N state traversals when processing an input string of length
N, and yields a tenfold improvement in compression ratio. A-
DFA is a nearly optimal transition-merging algorithm in both
memory usage and bandwidth.

All the algorithms mentioned above used the redundancy of
DFA’s transition table. Besides these, many other algorithms
were presented in recent years: T. Liu et al .[6] divided all
the transitions into three groups and stored them into three
different matrixes, then compress these matrixes. Y. Liu et al
.[16] decomposed the DFA transition table into a column, a
row vector and a sparse matrix to reduce the storage space as
much as possible. QI Y et al.[11] proposed a two-dimensional
compression algorithm, utilizing the intra-state redundancy
and inter-state redundancy of DFA to reduce the memory
consumption.

In our opinion, the essential of DFA compression al-
gorithms is how to balance the memory consumption, the
memory bandwidth and the matching speed. Compared with
algorithms mentioned above, J-DFA combined state encoding
with the transition redundancy elimination technique to get
an ideal compression ratio. Besides, using the state prediction

7

0

3

6 7

1 2

4 5 8

9

10

d

c

d

a b

c b a b

c

d

a

b b

c

d

a b

a b c d

0 2 3 1 0

1 2 3 5 4

2 2 6 1 0

3 7 8 1 0

4 2 3 5 0

5 2 3 1 10

6 7 10 1 0

7 2 10 1 0

8 2 3 9 0

9 2 3 1 10

10 2 3 1 0

CS

Rule 1:  bbcd
Rule 2: cd.cd
Rule 3: a*ba.b

(a) (b) (c)

Fig. 1. A complex case of (bbcd), (cd.cd) and (a ∗ ba.b). DFA states are
divided to two groups. (a) is the regex rules; (b) is the corresponding DFA;
(c) is the transition table.

scheme, J-DFA significantly improved the matching speed of
regular expression matching engine. In the following sections,
we will show the technique detail of J-DFA.

III. J-DFA ALGORITHM

J-DFA algorithm is based on this observation: the states
of DFA from real-life regular expression rule-sets have an
obvious characteristic of clustering. More specifically, almost
every state has multiple similar states, with very little different
transitions between them, so the transition table can be divided
into one or more groups by putting similar states together. To
better illustrate this phenomenon, we use one DFA generated
from regex rules of (bbcd), (cd.cd) and (a ∗ ba.b). This DFA
is shown in Fig.1. For simplicity, the default transitions are
omitted in Fig.1(b). Fig.1(c) is the corresponding transition
table. It is very obvious that there are a lot of similar states
in Fig.1(c). And we group these states into two groups, with
each group colored as yellow and blue.

From the phenomenon in Fig.1(c), we develop a DFA
compression algorithm called J-DFA. J-DFA algorithm has
two steps: first, to decompose a DFA using clustering al-
gorithm, and second, to further compress the storage space
using runlength encoding scheme. In the first step, we use
the classical data clustering algorithm to group the similar
states, and the DFA states is divided into multiple groups.
Meanwhile, the center state of each clustering could be gained.
Then, we extract the special transitions by subtracting each
state with the clustering center state. So the original DFA
transition table is converted into multiple clustering center
states (common states) and small amount of special transitions.
Now the original DFA is decomposed to three parts: (i) Index
Table; (ii) Clustering Groups; (iii) Sparse Matrix, as in Fig.2.
In Fig.2, we illustrate the decomposition still using the example
in Fig.1. We can see that the DFA states are classified to four
groups, every group with one common states. We put these
four common states together, calling it “Clustering Groups”.
And the transitions different with common states are left in the
table, and we call this table “Sparse Matrix”. Finally, we build
an “Index Table” to indicate the relationship between original
states and the common states.

In the second step, we further compress the storage space
by encoding the common states. We perform the runlength
encoding to the Index Table and the Clustering Groups of
Fig.2. Assuming a common state is aaaaabbbccccdddddd,
then, after the run length encoding, the common state becomes
a{5}b{3}c{4}d{6}, which means a repeating 5 times, the b
repeating 3 times, and so on. Experiment results show that the
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Fig. 2. A DFA is decomposed to three parts: (i) Index Table; (ii) Clustering
Groups; (iii) Sparse Matrix.

runlength encoding can improve the compression ratio from
about 3% to less than 1%.

Algorithm 1. : Construction Algorithm of J-DFA

Input: TransitionTable,N,C,K
Output: ClusteringGroups, SparseMatrix, IndexTable

1: IndexTable← KMeans(TransitionTable)
2: for i = 1 to K do
3: ClusteringGroups[i] ←

getCenter(TransitionTable, i)
4: end for
5: for s = 1 to N do
6: k ← IndexTable[s]
7: for c = 1 to C do
8: SparseMatrix[s][c] ← TransitionTable[s][c] −

ClusteringGroups[k]
9: end for

10: end for
11: for i = 1 to K do
12: ClusteringGroups[i] ←

runlengthEncoding(ClusteringGroups[i])
13: end for
14: IndexTable← runlengthEncoding(IndexTable)

Detailed construction algorithm of J-DFA is listed in Al-
gorithm 1. N is the number of DFA states. C is the size
of character set. K is the number of groups that DFA states
are divided. In Algorithm 1, because we adopt the K-means
algorithm, it is hard to determine the initial K. So we manually
try different K for a rule set, and find the best result. In the
1st line, we divide all the DFA states into K groups by K-
means clustering algorithm, and IndexTable is worked out to
indicate which group every DFA state s belongs to. From line
2 to line 4, we calculate the common states for each group by
getCenter function. Details of this function is shown in Algo-
rithm 2. From line 5 to line 10, we visit every state of DFA, and
store the different transitions to SparseMatrix. From line 11
to line 14, we further compress the ClusteringGroups and
IndexTable using runlength encoding. The time complexity
of Algorithm 1 is O(K ∗N ∗C). During the construction, we
need two N ∗C matrix to deposit the transitions. So the space
complexity of Algorithm 1 is O(N ∗ C).

Algorithm 2 presents how to calculate a common state
from a group. The principle of calculating common state is to
guarantee the SparseMatrix as sparse as possible. Thus, for

Algorithm 2. : Pseudocode for getCenter function

Input: Group,C
Output: CommonState

1: L← getArrayLength(Group)
2: for c = 1 to C do
3: Array.clear()
4: for l = 1 to L do
5: Array.insert(Group[l][c])
6: end for
7: CommonState[c]←

findMostFrequentElement(Array)
8: end for
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Fig. 3. Pipeline diagram of DFA and J-DFA.

every c in alphabet, we must select the most frequent transition
as a common state transition.

IV. STATE PREDICTION TECHNIQUE

In this section, we talk about the state prediction technique
used in our regular expression matching engine. This technique
relies on the run-time property of J-DFA. In the following
paragraphs, we first elaborate why DFA compression algo-
rithms decrease the matching speed by analyzing the lookup
procedure of J-DFA. Then we present the details of state
prediction technique, and verify its effectiveness by experiment
results.

A. Lookup Procedure of J-DFA

Usually, DFA completes one lookup in one clock cycle
on FPGA. However, after compressing, the lookup procedure
becomes complex. When conducting a state lookup in J-DFA,
we have to perform the following steps. First, we search the
“Index Table” in Fig.2 for the common state, and get the “next
state” from the common state. Then, we look up the “Sparse
Matrix” to determine whether the corresponding transition is a
“non-zero element”. If it is a “non-zero element”, this value is
assigned to “next state”. Of all these steps, the sparse matrix
lookup is the most time-consuming operation, consuming at
least 3 clock cycles. That means, we must consume at least 3
clock cycles to finish one J-DFA lookup.
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Compared with the lookup procedure of normal DFA,
the lookup procedure of J-DFA is complex and more time-
consuming. When implemented on FPGA, it costs more than
3 clock cycles to complete a lookup for J-DFA. Fig.3 shows
the pipeline diagram of DFA and J-DFA. In all the six clock
cycles, the DFA algorithm conducts the lookup operation for
6 times, while J-DFA algorithm only conducts the lookup
operation for twice. Because the lookup operation is a self-
feedback procedure: the input signal “current state” of DFA
is determined by the output signal “next state”, the pipelining
technique is invalid for DFA lookup. So the lookup operation
of J-DFA in Fig.3(b) has to pause for 3 clock cycles waiting
for the previous lookup operation to finish. Obviously, the
matching speed of J-DFA is 3 times slower than that of DFA.

B. Details of State Prediction Technique

To reduce the clock delay brought by DFA transition table
compression, we proposed a state prediction approach in our
regular expression matching design. This approach is based
on two observations: first, most adjacent states share a large
part of the same transitions. Here, if one state can traverse to
another state, we call the two states are “adjacent”. Second, in
a real matching process of J-DFA, if “current state” is in one
“clustering group”, it has a great chance that “next state” is
still in the same “clustering group”. This means at any moment
if one “common state” is used, it is very likely be used in the
next clock cycle.

The first observation has been widely used and proved
in many previous DFA compression algorithms to compress
the DFA transition table, such as D2FA[9] and δFA[10]. The
second observation is the run-time property of J-DFA, and
we call this property the “locality” of J-DFA. Using these
two observations, we can predict the “next state” with a high
success rate.

1) Measurement of State Prediction: To validate our obser-
vations, we measure the success rate of J-DFA applying pre-
diction scheme. The measurement is based on several real-life
rulesets from Bro, Snort and L7-filter. We use the opensource
regex−tool, which is provided by Michela Becchi in [17],
to generate the DFAs. L7-filter’s ruleset is hard to generate a
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Fig. 6. J-DFA lookup procedure applying state prediction.

whole DFA for the severe state blowup problem, so we divide
the L7-filter ruleset to multiple groups using the Yu’s grouping
method[5]. Also the snort rule set is divided into multiple
groups. Details of rule sets are shown in Table I. The test
datasets are taken from six different sources. These datasets
include plain text, music, format document, and network traffic
traces. More details of test data are shown in Table II. The
cookies are collected from the Google Chrome application.
The cap 1 and cap 2 datasets are traces from the campus
network. The pcap 1 and pcap 2 datasets are traces captured
from the family network. For NIDS, the traffic traces are the
most universal and representative. However, considering the
extreme cases in network, we also adopt the application data
which may be inspected by NIDS in our measurement.

2) Experiment Design: To exploiting the “locality” of J-
DFA, we designed a simple cache scheme. We first keep
recently used states in a set of small but fast caches. When
conducting a new state lookup operation, instead of looking
up the whole transition table stored in memory, we get the
next state from cache. For normal DFA, we store the “current
state” in the cache. While for J-DFA, we store the “common
states” in the cache. Next, we conduct two experiments to
predict the next state, separately for normal DFA and J-DFA.

3) Measurement for Normal DFA: Detailed process of this
experiment is as follows: during the progress of state traverse,
the “previous state” is named Scache and the “current state”
is named Scurrent. Scache is recorded in cache to predict
the next state transition. When the input char c arrives, if
the next transition Scache(c) not equal to Scurrent(c), the
prediction fails. And the failure counter is incremented by 1. In
every clock cycle, Scurrent is loaded into cache to replace the
outdated Scache. In this way, we get the failure rate of normal
DFA prediction for various rulesets and datasets in Fig.4. We
can make conclusion: to some extent, the normal DFA state
transition follows the locality principle. In most cases, the
failure rate of prediction is lower than 40%. However, for
plain text datasets, the experiment results is so bad. Especially,
for “Bible.txt” in “Bro217”, the failure rate reaches as high
as 95%. Altogether, the prediction scheme on normal DFA
is not very efficient, and can not meet the complex business
requirements.

4) Measurement of J-DFA: Similar with normal DFA,
details of J-DFA experiment is as follows: during the progress
of state traverse, the “previous state” is named Scache and the
current “common state” is named Scommon. Scache is recorded



TABLE I. CHARACTERISTIC OF RULESETS

rulesets rules number states number
bro217 217 6533
snort24 24 8335
snort31 40 4864
snort34 34 9754
l7 top7 7 12910

l7 2 7 1888
l7 3 12 2293
l7 5 6 2984
l7 6 5 4887
l7 7 5 4028

TABLE II. CHARACTERISTIC OF TEST DATA

data type size(KB) state traverse times
cookie 1 6,670 6,765,306
cookie 2 14,726 15,079,191

pdf 1,551 1,587,858
mp3 3,786 3,876,227

cap 1 20,480 20,971,520
cap 2 4,858 4,974,480
pcap 1 8,896 9,109,435
pcap 2 28,667 29,354,030

Bible.txt 4,128 4,227,016
Flies.txt 1,104 1,130,314
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Fig. 7. Pipeline diagram of J-DFA with predictor.

in cache to predict the next state transition. When the input
char c arrives, if the next transition Scache(c) not equal to
Scurrent(c), the prediction fails. And the failure counter is
incremented by 1. Instead of the “previous state”, the “common
state” is reserved in cache. In every clock cycle, Scommon is
loaded into cache to replace the outdated Scache.

J-DFA improves the prediction success rate using the
common state in “Clustering Groups” to predict the next state.
Prediction failure rate of J-DFA is shown in Fig.5. Expect
Bro217, the failure rate of J-DFA is lower than 0.5%. For some
cases, the failure rate is 0%, which means every prediction
succeeds. Obviously, this result is better than that of normal
DFA. And the prediction scheme on J-DFA is rather efficient
and steady. So in the following section, we implement a
regular expression matching engine based on J-DFA and state
prediction scheme.

V. HARDWARE IMPLEMENTATION

A. Mapping of State Prediction Scheme

From previous discussion, the sparse matrix lookup oper-
ation can be pipelined into 3 steps. The lookup procedure of
J-DFA applying state prediction is shown in Fig.6. Every time
one character comes, the “Predictor” generate a “Predicted
Next State” as the next state. This operation only costs one
clock cycle. At the same time, the “real” next state is calcu-
lated in the “J-DFA Lookup Module”. The “J-DFA Lookup
Module” is designed as a 3-stage pipeline. So the “Predictor”
must record the results of recent 3 clock cycles in “History
registers”. If the “Predicted Next State” dose not equal to the
“real next state”, the prediction of 3 clock cycles ago fails. In
this case, all the results recorded in the “History registers” is
cleared and the states of the whole circuit is restored to that
of 3 clock cycles ago. So we must buffer the recent 3 input
character in the “Input Char Buffer”.
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Fig.7 is the pipeline diagram of J-DFA with predictor.
Compared with Fig.3(b), the 2nd lookup operation starts at
the 2nd clock cycle without waiting for the finish of the 1st
lookup operation. This is because we use the predicted state
to perform the next matrix lookup operation applying the state
prediction technique. If the prediction fails, as at the 4th clock
cycle in Fig.7, the whole pipeline must restore to 3 clock cycles
ago. After clearing the “history registers”, the pipeline restarts
from the 2nd lookup operation at the 7th clock cycle. From
this example, we can see that when the prediction fails, the
pipeline must pay a punishment of extra 3 clock cycles.

B. J-DFA Regex Matching Engine

Detailed architecture of J-DFA regular expression matching
engine is shown in Fig.8. As is said in section IV, original
DFA is divided into three parts: index table, clustering groups
and sparse matrix (Fig.1). The index table is mapped into
the “Index Table” module of Fig.8. The clustering groups
is mapped into the “Clustering Groups” module. The sparse
matrix is mapped into the “Sparse Matrix” module. After using
the prediction scheme to decrease the clock cost, the average
clock cycles that the pipeline costs can be calculated by this
equation: ACC = NC ∗ p + PC ∗ (1 − p). “ACC” means
“average clock cycles” of the pipeline. “NC” means clock
cycles consumed in normal case. In our design, the value of
“NC” is 1. “p” means the prediction failure rate. “PC” means
“punishment clock cycles” of the pipeline if the prediction
fails. In our design, the value of “PC” is 3.
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In our design, index table and clustering groups are run-
length encoded though not shown in Fig.8. And we designed
a runlength decoder unit for these two modules (blue boxes
in Fig.8). The decoder is implemented using multi-path com-
parators, as is shown in Fig.9. For example, if now the “input
char” is 3, then this value is compared with the pos array
simultaneously. If pos[i] ≥3 and pos[i− 1] < 3, i is the right
value decoded. In this example, i is 1, and the state decoded
is “B”. In this way, the index table and clustering groups state
can be decoded within one clock cycle.

C. Performance Evaluation

We target the regular expression matching engine into a
Xilinx Virtex-7 FPGA chip(XC7VX1140T: 1,139,200 logic
cells (LCs), 17,700 Kb Distributed RAM, total 67,680 Kb
BRAM). Rulesets and datasets have been presented in Sec-
tion III and Section IV. We evaluate our regular expression
matching engine from these aspects: memory usage, memory
bandwidth and throughput.

1) Memory Usage: In this section, we compared memory
usage of J-DFA with three other DFA compression algorithms:
δFA[8], D2FA[7] and CRD(colomn-row decomposition)[16]
algorithm. All these algorithms aim at eliminating the redun-
dancies of DFA transition table, which is similar to J-DFA.

The compression ratio of these algorithms is presented in
Fig.11 and Table III. For most of rulesets, the compression
ratio is lower than 1%. This result yields a tenfold improve-
ment than previous work like D2FA and δFA. This is because
J-DFA not only reduces the redundancy between DFA states,
but also eliminates the redundancy within common states by
runlength encoding scheme. The total memory usage includes
“Index Table”, “Clustering Groups” and “Sparse Matrix”. We
suppose: one state costs 14bits; one character costs 8 bits;
sparse matrix position costs 14bits. Fig.10 shows how much
memory space each ruleset costs. From Fig.10, the memory
usage is less than 0.1MB, and there are about 8.26MB block
memory on FPGA chip. Conservatively estimating, we can run
more than 80 sets of L7 2 ruleset in parallel. Because there are
7 rules in L7 2 ruleset, we can run about 80*7=560 L7-filter
rules overall. By similar calculations, we can run more than
8,000 snort regex rules, or 40,000 bro regex rules on Virtex-7
FPGA chip.

2) Memory Bandwidth: The memory bandwidth is deter-
mined by the efficiency of memory access and the num-
ber of extra bits used for locating the compressed DFA.
For our design, if the prediction fails, the punishment is 3
clock cycles, the memory access times can be calculated as
(1 − failure rate) ∗ 1 + failure rate ∗ 3. In Fig.12, we
compared the the average state travel times per input character
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with normal DFA, δFA, D2FA, and FEACAN[11]. FEACAN
uses both intra-state and inter-state compression techniques
to compress the DFA table, and uses bitmap to store the
compressed transition table. From Fig.12, we can see that J-
DFA nearly not adding the memory access times compared
with normal DFA. Total bits for one transition of J-DFA
includes these aspects: input char and state for sparse matrix,
common state and predictor and auxiliary bits for looking up
sparse matrix. If the auxiliary bits is 32 bits (16+16), input
char is 8 bits, state is 16 bits, the bandwidth of J-DFA for one
transition is about (8+16)*3+32=108. This result is acceptable
for State-of-the-art FPGA chips and blockrams.

3) Throughput: We write the regular expression matching
engine in Verilog language and implement the prototype on
Virtex-7 FPGA chip. We simulate our design using Model-
sim6.5 simulator, and synthesize with ISE14.2 synplify tool
chain. The max frequency for different rulesets is more than
200MHz, and we take 150MHz to moderately evaluate our
throughput. We achieve scalable performance by using parallel
regular expression engines. Because J-DFA is a memory-based
design, the number of parallel engines is limited by the overall
size of blockRAMs available on FPGA. Table IV shows the

rule
sets

δFA D2FA(DB=1) CRD J-DFA

bro217 0.062 0.220 0.035 0.0100
snort24 0.037 0.134 0.100 0.0046
snort31 0.061 0.153 0.044 0.0074
snort34 0.030 0.145 0.059 0.0036
l7 top7 0.902 0.136 0.201 0.0070

l7 2 0.867 0.101 0.403 0.0846
l7 3 0.124 0.129 0.358 0.0048
l7 5 0.697 0.147 0.084 0.0046
l7 6 0.415 0.068 0.129 0.0312
l7 7 0.666 0.060 0.048 0.0060

TABLE III. COMPRESSION RATIO OF δFA, D2FA, CRD AND J-DFA
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Rule
sets

Memory Usage
for Single

Engine(KB)

# of
engines

fmax

(MHz)
Throughput

(Gbps)

bro217 11.4 196 150 230
snort24 8.9 225 150 264
snort31 6.86 359 150 421
snort34 9.11 367 150 430

TABLE IV. THROUGHPUT OF REGULAR EXPRESSION MATCHING
ENGINE

maximum number of engines can be implemented on one
Virtex-7 chip with 8640KB blockRAMs. We can see J-DFA
engine achieves a throughput of 230∼430Gbps.

VI. CONCLUSION

The tradeoff between memory compression and matching
speed is the essential of DFA compression algorithm. Previous
works focus on the DFA compression algorithms, but place
little emphasis on how to access the irregular compressed
transition table efficiently. In this paper, we succeed balancing
this conflict using state prediction technique. Our DFA com-
pression algorithm(J-DFA) has very good run-time property
suitable for state prediction. Measurement results show that
the prediction success rate of J-DFA is higher than 99.5%.
Based on J-DFA and state prediction technique, we propose a
novel regular expression matching engine. On Xilinx Virtex-7
chip, this engine gets a throughput of 230∼430Gbps based on
snort and bro regex rules.
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